

ee

WHAT IS IT...

6-0-0

Derived from Non-GMO Soy Protein Hydrolysate

Micronutrition is one of the main driving factors in plant health, nutrient density and total harvest weight. We have tied 8 of the most important and most difficult micronutrients for plants to access to our amazing non-GMO amino acid powder. Giving our growers a 100% immediately available & 100% soluble micronutrient that is great as either a foliar or a root drench. Green9 will ensure jealous friends and busted drying racks/scales when harvest season comes. The only bad thing about Green9 is your immediate need for a bigger grow & harvest room! We are going to need a **BIGGER** boat!

> 0.83% Magnesium (Mg) 9.8% Sodium (Na)

2.63% Iron (Fe) 3.97% Zinc (Zn) 1.17% Manganese (Mn)

1.51% Copper (Cu)

0.12% Molybdenum (Mo)

0.66% Boron (B)

HOW + WHEN TO USE IT...

• Try Green9 in ANY growing system!

ROOT DRENCH (PER GAL)

	VEG				BLOOM								
	_	2	3	4	-	2	3	4	5	6	7	8	9
tsp	_	_	-1	1-1/2	1 1/2	1-1/2	1 1/2	1	2	5	_	3/4	1/2
grams	4	4	4	6	6	6	6	8	8	8	4	3	2

INJECTION

CHART		Low	Low Dose High Dose		
Setting	%	grams / gal	total grams	grams / gal	total grams
I to 100	1%	2 g	200	8 g	800
I to 200	0.5%	2 g	400	8 g	1600
I to 500	0.2%	2 g	1000	8 g	4000

HOW IT WORKS...

- Micronutrients are essential to plant growth & plant health.
- Green9 is specifically formulated to provide essential nut-

CONVERSION

GREEN9				
Volume Weight (g)				
l tsp	3.8			
1 Tbsp	11.0			
I Cup	176.0			

- rition, in a plant-based form, to all types of agriculture. • Green9 is immediately available, similar to synthetic nutrients, but in a plant-based water-soluble form.
- When paired with amino acids, these micronutrients provide can help increase the health of your crop drastically.
- Increasing nutrient density in your system helps to increase potential biomass of plant material.
- They are delivered across cell walls of root tissue via root radicles, or they are absorbed through the leaf stomatas.
- Micronutrients also help to increase Brix levels (natural plant sugars) as well as oil, terpenes, and other desirable plant extracts.

RESERVOIR DOSAGE

GREEN9					
Reservoir	2 g/gal	8 g/gal			
Size (Gal)	Total Nutrient Input (g)				
5	10.0	40.0			
25	50.0	200.0			
50	100.0	400.0			
100	200.0	800.0			
250	500.0	2000.0			

@KEYTOLIFENUTRIENTS

PRO TIPS...

- Use Green9 in conjunction with Cal[No]Mag for optimal results.
- We separate the two products for a very specific reason. Calcium & Magnesium tend to interact negatively with Phosphates and other nutrients when they are in the same container. Separating Calcium from these 8 micronutrients provides an optimal delivery system that your plant will respond to positively.
- Good for ALL stages of growth!

COST PER DOSE

GREEN9					
Size	2 g/gal	10 g/gal			
Size	Cost per Dose				
8 oz.	\$0.282	\$1.41			
32 oz.	\$0.207	\$1.04			
2 Gal. (4lb)	\$0.178	\$0.89			
5 Gal. (10lb)	\$0.149	\$0.74			
20 lb.	\$0.119	\$0.60			
50 lb.	\$0.090	\$0.45			

HOW MANY GALLONS

GREEN9					
Size	2 g/gal	8 g/gal			
3120	Total Gallons Made				
8 oz.	113.4	28.3			
32 oz.	453.6	113.2			
2 Gal. (4lb)	907.2	226.4			
5 Gal. (10lb)	2268.0	566.0			
20 lb.	4536.0	1132.0			
50 lb.	11340.0	2830.0			

MICRONUTRIENT ATTRIBUTES...

Name Elemental Sign		Micronutrient Class	Functions		
			Assists photosynthesis and contributes to protein synthesis		
			Central atom in chlorophyll		
		0	Many enzymes require this to function properly		
Magneseium	Mg	Secondary	Deficiency can cause yellowing between veins		
			Toxicity = RARE		
			Antagonistic with Calcium and Potassium when overfed		
		0	Can be used to aid in metabolism and chlorophyll synthesis		
			Aids in closing leaf stomatas		
Sodium	Na	Non-Essential	Can cause burnt leaf tips when overfed		
			Can aid in osmosis and regulate internal water balance		
			Deficiency = EXTREMELY rare		
			Most important micronutrient		
			Availability is 100% pH dependant		
Iron	Fe	TRUE	Essential for chlorophyll formation		
	re	IKUE	Constituent of many enzymes and pigments		
			Deficiency appears as chlorosis		
			In the EDTA form		
	Zn	TRUE	Activates enzymes that stimulate plant protein synthesis		
			Helps convert starches to sugars and for carbs		
Zinc			Helps plants withstand cold temperatures		
20			Essential for formation of plant auxins responsible for stem elongation		
			Deficiency appears as necrotic spots on leaf margins		
			Deficiency should be addressed before damage is irreversible		
			2nd in importance behind iron and is very important in chlorophyll production		
			Essential for respiration, photosynthesis and nitrogen assimilation		
	Mn		Involved in pollen germination, pollen tube growth		
Manganese		TRUE	Also involved in root cell elongation and resistance to root pathogens		
			Deficiency occurs at pH above 6.5 but it is most available at a pH lower than 5.5		
			Appears as tan sunken spots in chlorotic areas between veins		
			Immobile so you will see it in new growth		
			Part of enzymes essential for the formation of chlorophyll and the synthesis of lignin		
			Required for photosynthesis, plant respiration and metabolism of carbohydrates and proteins		
Copper	Cu	TRUE	Very important for flavor/terpene/color intensity		
	ou		Immobile so deficiency occurs in new growth where it loses sheen and sometimes wilts		
			Apical meristems become necrotic and die		
			Excess P or K can cause deficiency		
			Used with calcium to synthesise cell walls and helps regulate hormone levels		
Boron	В	TRUE	Used in higher amounts to help with reproductive growth, pollination and seed development		
			Assists in the translocation of carbs/sugars and potassium to leaf stomatas		
			Assists nitrogen metabolism and formation of proteins		
Molybdenum	Мо	TRUE	Deficiency appears as "rosetting" in new growth, flowers and root tips		
			Required last and in the least amount		
			Essential for enzymes that convert nitrate to nitrite to ammonia to synthesize amino acids		
			Required to fix nitrogen in legumes		
			Used to convert inorganic phosphorus to organic, plant available phosphorus		
			Deficiency appears in older leaves and causes paleness, then spreads to new growth		
			May also cause leaves to "shrink" in size, especially in severe cases		